COS 423

Problem Set No. 2

Due March 10, 2004
Spring 2004

Collaboration Allowed

1. (Finding cycles in lists) Consider a linked list with first node s. Each node x has a pointer
[image: image1.wmf]()

px

 to the next node on the list; if x is the last node,
[image: image2.wmf]()null,

px

=

where null is a special value not equal to any other node. The goal of this problem is to test whether the list that starts at node s is well-formed. A list is well-formed if, when following pointers from s, null is reached before any node is repeated; a repeated node would indicate that there is a cycle of pointers. Describe an algorithm that tests for cyclicity in time linear in the number of nodes reachable from s, without changing any pointer and using only constant extra space (a constant number of pointer variables).
2. (Rotation via reversal)
(a) Given a string stored in an array, give a linear-time algorithm to reverse the string, in place, using only O(1) extra space (O(1) array indices and array values).

(b) Given a string of length n stored in an array, give a linear-time in-place algorithm to rotate the string left k positions, so that
[image: image3.wmf]12

...

n

aaa

becomes
[image: image4.wmf]1

11.

......

n

kkk

aaaaa

+-

 Use only O(1) extra space (O(1) array indices and array values). Hint: use three reversals.
3. Which is asymptotically larger:
[image: image5.wmf]*

lg(lg)

n

or
[image: image6.wmf]*

lg(lgn)?

 Justify your answer. (See CLRS Chapter 3, p.55,56.)
4. An
[image: image7.wmf]x

mn

Young tableaux is an
[image: image8.wmf]x

mn

 matrix such that the entries of each row are in sorted order from left to right and the entries of each column are in sorted order from top to bottom. Give an
[image: image9.wmf]O()-time

mn

+

algorithm to determine whether a given number is stored in an
[image: image10.wmf]x

mn

 Young tableaux.
5. Assume that a binary search tree is represented using left child, right child, and parent pointers. (See CLRS Figure 10.9, page 215.) Give an algorithm that, given the root of an n-node binary search tree as input, will output the keys of all the nodes in symmetric order. Your algorithm should run in O(n) time, not modify the tree, even temporarily, and use constant extra space (O(1) pointers to nodes).

6. Describe an
[image: image11.wmf]O(logn)-time

(worst-case) insertion algorithm for red-black trees that operates in one top-down pass, rebalancing during the top-down pass (instead of rebalancing bottom-up after the insertion). Such a method can be implemented without requiring parent pointers in the tree or saving the search path in a stack.

7. (Skinny heaps) Modify the implementation of decrease-key in thin heaps so that only one new tree is created. Verify that your modification preserves the amortized time bounds of all the operations. Hint: You will need to modify Case 2 (child violation) of decrease-key. Consider the right sibling, say w, of y, and break Case 2 into two cases, depending on whether w is thin or thick. Possible actions you might try to take to fix the violation include exchanging y and w (and their attached subtrees), or linking y and w (and their attached subtrees). Such an action may require first changing the ranks of y, w, and possibly other nodes.

_1138518343.unknown

_1138522837.unknown

_1138601200.unknown

_1138601278.unknown

_1138537945.unknown

_1138521425.unknown

_1138516560.unknown

_1138518007.unknown

_1138516466.unknown

